Filters
Question type

Study Flashcards

Solve the problem. -Find the table that matches the given graph.  Solve the problem. -Find the table that matches the given graph.    A)   \begin{array}{l|l} x & f^{\prime}(x)  \\ \hline a & \text { does not exist } \\ \hline b & 0 \\ \hline c & -1 \end{array}   B)   \begin{array}{l|l} x & f^{\prime}(x)  \\ \hline a & \text { does not exist } \\ \hline b & \text { does not exist } \\ \hline c & -1 \end{array}    C)   \begin{array}{c|c} x & f^{\prime}(x)  \\ \hline a & 0 \\ \hline b & 0 \\ \hline c & -1 \end{array}   D)   \begin{array}{l|l} \mathrm{x} & \mathrm{f}^{\prime}(\mathrm{x})  \\ \hline \mathrm{a} & \mathrm{does} \text { not exist } \\ \hline \mathrm{b} & 0 \\ \hline \mathrm{c} & 1 \end{array}


A)
xf(x) a does not exist b0c1\begin{array}{l|l}x & f^{\prime}(x) \\\hline a & \text { does not exist } \\\hline b & 0 \\\hline c & -1\end{array}

B)
xf(x) a does not exist b does not exist c1\begin{array}{l|l}x & f^{\prime}(x) \\\hline a & \text { does not exist } \\\hline b & \text { does not exist } \\\hline c & -1\end{array}


C)
xf(x) a0b0c1\begin{array}{c|c}x & f^{\prime}(x) \\\hline a & 0 \\\hline b & 0 \\\hline c & -1\end{array}

D)
xf(x) adoes not exist b0c1\begin{array}{l|l}\mathrm{x} & \mathrm{f}^{\prime}(\mathrm{x}) \\\hline \mathrm{a} & \mathrm{does} \text { not exist } \\\hline \mathrm{b} & 0 \\\hline \mathrm{c} & 1\end{array}

E) B) and C)
F) None of the above

Correct Answer

verifed

verified

Graph the rational function. - y=x2x2+13y=\frac{x^{2}}{x^{2}+13}  Graph the rational function. - y=\frac{x^{2}}{x^{2}+13}     A)     B)     C)     D)


A)
 Graph the rational function. - y=\frac{x^{2}}{x^{2}+13}     A)     B)     C)     D)

B)
 Graph the rational function. - y=\frac{x^{2}}{x^{2}+13}     A)     B)     C)     D)

C)
 Graph the rational function. - y=\frac{x^{2}}{x^{2}+13}     A)     B)     C)     D)

D)
 Graph the rational function. - y=\frac{x^{2}}{x^{2}+13}     A)     B)     C)     D)

E) B) and C)
F) A) and B)

Correct Answer

verifed

verified

Answer each question appropriately. -Find the standard equation for the position ss of a body moving with a constant acceleration a along a coordinate The following properties are known: i. d2 sdt=a\frac { \mathrm { d } ^ { 2 } \mathrm {~s} } { \mathrm { dt } } = \mathrm { a } , ii. dsdt=v0\frac { \mathrm { ds } } { \mathrm { dt } } = \mathrm { v } _ { 0 } when t=0\mathrm { t } = 0 , and iii. s=s0s = s 0 when t=0t = 0 , where tt is time, s0s _ { 0 } is the initial position, and v0v _ { 0 } is the initial velocity.


A) s=at22v0ts0s = \frac { a t ^ { 2 } } { 2 } - v _ { 0 } t - s 0
B) s=at22+v0t+s0s = \frac { a t ^ { 2 } } { 2 } + v _ { 0 } t + s _ { 0 }
C) s=at2+v0t+s0s = a t ^ { 2 } + v _ { 0 } t + s 0
D) s=at22+s0s = \frac { a t ^ { 2 } } { 2 } + s 0

E) B) and C)
F) A) and B)

Correct Answer

verifed

verified

Solve the problem. -Find the optimum number of batches (to the nearest whole number) of an item that should be produced annually (in order to minimize cost) if 60,000 units are to be made, it costs $4 to store a unit for one year, and it Costs $600 to set up the factory to produce each batch. Assume that units of this item will be sold off throughout The year, so the cost equation will use the average cost.


A) 16 batches
B) 14 batches
C) 12 batches
D) 10 batches

E) B) and C)
F) All of the above

Correct Answer

verifed

verified

Sketch the graph and show all local extrema and inflection points. - Sketch the graph and show all local extrema and inflection points. -   A)  Local minimum  ( 0 , \ln 12 )   No inflection point    B)  Local minimum  ( 0 , - \ln 12 )    No inflection point    C)  Local maximum  ( 0 , \ln 12 )   No inflection point     D)  No extrema No inflection point


A) Local minimum (0,ln12) ( 0 , \ln 12 )
No inflection point
 Sketch the graph and show all local extrema and inflection points. -   A)  Local minimum  ( 0 , \ln 12 )   No inflection point    B)  Local minimum  ( 0 , - \ln 12 )    No inflection point    C)  Local maximum  ( 0 , \ln 12 )   No inflection point     D)  No extrema No inflection point

B) Local minimum (0,ln12) ( 0 , - \ln 12 )
No inflection point
 Sketch the graph and show all local extrema and inflection points. -   A)  Local minimum  ( 0 , \ln 12 )   No inflection point    B)  Local minimum  ( 0 , - \ln 12 )    No inflection point    C)  Local maximum  ( 0 , \ln 12 )   No inflection point     D)  No extrema No inflection point

C) Local maximum (0,ln12) ( 0 , \ln 12 )
No inflection point
 Sketch the graph and show all local extrema and inflection points. -   A)  Local minimum  ( 0 , \ln 12 )   No inflection point    B)  Local minimum  ( 0 , - \ln 12 )    No inflection point    C)  Local maximum  ( 0 , \ln 12 )   No inflection point     D)  No extrema No inflection point

D) No extrema
No inflection point
 Sketch the graph and show all local extrema and inflection points. -   A)  Local minimum  ( 0 , \ln 12 )   No inflection point    B)  Local minimum  ( 0 , - \ln 12 )    No inflection point    C)  Local maximum  ( 0 , \ln 12 )   No inflection point     D)  No extrema No inflection point

E) B) and C)
F) C) and D)

Correct Answer

verifed

verified

Find the open intervals on which the function is increasing and decreasing. Identify the function's local and absolute extreme values, if any, saying where they occur. -Find the open intervals on which the function is increasing and decreasing. Identify the function's local and absolute extreme values, if any, saying where they occur. -  A)  increasing on (-3, 0) ; decreasing on (-5, -3)  and (2, 5)  absolute maximum at (-5, 0) ; local minimum at (-3, -3)  and (5, -3)  B)  increasing on (-3, 0) ; decreasing on (-5, -3)  and (2, 5)  absolute maximum at (-5, 0) ; local maximum at (0, 0)  and (2, 0) ; Absolute minimum at (5, -3)  C)  increasing on (-3, 1) ; decreasing on (-5, -3)  and (0, 5)  absolute maximum at (-5, 0) ; no absolute minimum D)  increasing on (-3, 0) ; decreasing on [-5, -3)  and (2, 5] absolute maximum at (-5, 0) ; absolute minimum at (5, -3)


A) increasing on (-3, 0) ; decreasing on (-5, -3) and (2, 5) absolute maximum at (-5, 0) ; local minimum at (-3, -3) and (5, -3)
B) increasing on (-3, 0) ; decreasing on (-5, -3) and (2, 5) absolute maximum at (-5, 0) ; local maximum at (0, 0) and (2, 0) ;
Absolute minimum at (5, -3)
C) increasing on (-3, 1) ; decreasing on (-5, -3) and (0, 5) absolute maximum at (-5, 0) ; no absolute minimum
D) increasing on (-3, 0) ; decreasing on [-5, -3) and (2, 5] absolute maximum at (-5, 0) ; absolute minimum at (5, -3)

E) B) and D)
F) A) and C)

Correct Answer

verifed

verified

Solve the problem. -  Use Newton’s method to find the four real zeros of the function f(x)=3x46x2+2=0\text { Use Newton's method to find the four real zeros of the function } f ( x ) = 3 x ^ { 4 } - 6 x ^ { 2 } + 2 = 0 \text {. }

Correct Answer

verifed

verified

None...

View Answer

Find the limit. - limxθ+8xcscx\lim _ { x \rightarrow \theta ^ { + } } 8 x \csc x


A) 0
B) \infty
C) 8
D) 1

E) A) and B)
F) C) and D)

Correct Answer

verifed

verified

Determine all critical points for the function. - y=4x2128xy = 4 x ^ { 2 } - 128 \sqrt { x }


A) x = 0
B) x = 4
C) x = 0, x = 4, and x = -4
D) x = 0 and x = 4

E) B) and D)
F) A) and B)

Correct Answer

verifed

verified

Estimate the limit by graphing the function for an appropriate domain. Confirm your estimate by using L'Hopital's rule. Show each step of your calculation. -A student attempted to use l'Hôpital's Rule as follows. Identify the student's error. limxsin(1/x)e1/x=limxx2cos(1/x)x2e1/x=limxcos(1/x)e1/x=11=1\begin{aligned}\lim _{ x \rightarrow \infty } \frac { \sin ( 1 / x ) } { e ^ { 1 / x } } = & \lim _{ x \rightarrow \infty } \frac { - x ^ { - 2 } \cos ( 1 / x ) } { - x ^ { - 2 } e ^ { 1 / x } } \\& = \lim _ { x \rightarrow \infty } \frac { \cos ( 1 / x ) } { e ^ { 1 / x } } = \frac { 1 } { 1 } = 1\end{aligned}

Correct Answer

verifed

verified

L'Hôpital's Rule cannot be app...

View Answer

Which of the graphs shows the solution of the given initial value problem? - dydx=6x,y=2\frac { d y } { d x } = - 6 x , y = - 2 when x=1x = 1


A)
 Which of the graphs shows the solution of the given initial value problem? - \frac { d y } { d x } = - 6 x , y = - 2  when  x = 1  A)     B)     C)     D)

B)
 Which of the graphs shows the solution of the given initial value problem? - \frac { d y } { d x } = - 6 x , y = - 2  when  x = 1  A)     B)     C)     D)

C)
 Which of the graphs shows the solution of the given initial value problem? - \frac { d y } { d x } = - 6 x , y = - 2  when  x = 1  A)     B)     C)     D)

D)
 Which of the graphs shows the solution of the given initial value problem? - \frac { d y } { d x } = - 6 x , y = - 2  when  x = 1  A)     B)     C)     D)

E) A) and B)
F) B) and C)

Correct Answer

verifed

verified

Find the most general antiderivative. - (8t2+t10) dt\int \left( 8 t ^ { 2 } + \frac { t } { 10 } \right) d t


A) 83t3+t+C\frac { 8 } { 3 } t ^ { 3 } + t + C
B) 16t+110+C16 t + \frac { 1 } { 10 } + C
C) 83t3+t220+C\frac { 8 } { 3 } t ^ { 3 } + \frac { t ^ { 2 } } { 20 } + C
D) 24t3+15t2+C24 t ^ { 3 } + \frac { 1 } { 5 } t ^ { 2 } + C

E) B) and D)
F) A) and D)

Correct Answer

verifed

verified

Solve the problem. -Using the following properties of a twice-differentiable function y=f(x) y = f ( x ) , select a possible graph of ff .  Solve the problem. -Using the following properties of a twice-differentiable function  y = f ( x )  , select a possible graph of  f .     A)     B)     C)     D)


A)
 Solve the problem. -Using the following properties of a twice-differentiable function  y = f ( x )  , select a possible graph of  f .     A)     B)     C)     D)

B)
 Solve the problem. -Using the following properties of a twice-differentiable function  y = f ( x )  , select a possible graph of  f .     A)     B)     C)     D)

C)
 Solve the problem. -Using the following properties of a twice-differentiable function  y = f ( x )  , select a possible graph of  f .     A)     B)     C)     D)

D)
 Solve the problem. -Using the following properties of a twice-differentiable function  y = f ( x )  , select a possible graph of  f .     A)     B)     C)     D)

E) B) and C)
F) A) and D)

Correct Answer

verifed

verified

Solve the problem. -A rectangular sheet of perimeter 27 cm27 \mathrm {~cm} and dimensions xcm\mathrm { x } \mathrm { cm } by ycm\mathrm { y } \mathrm { cm } is to be rolled into a cylinder as shown in part (a) of the figure. What values of xx and yy give the largest volume?  Solve the problem. -A rectangular sheet of perimeter  27 \mathrm {~cm}  and dimensions  \mathrm { x } \mathrm { cm }  by  \mathrm { y } \mathrm { cm }  is to be rolled into a cylinder as shown in part (a)  of the figure. What values of  x  and  y  give the largest volume?    A)   x = 9 \mathrm {~cm} ; y = \frac { 9 } { 2 } \mathrm {~cm}  B)   x = 10 \mathrm {~cm} ; y = \frac { 7 } { 2 } \mathrm {~cm}  C)   x = 8 \mathrm {~cm} ; y = \frac { 11 } { 2 } \mathrm {~cm}  D)   x = 11 \mathrm {~cm} ; y = \frac { 5 } { 2 } \mathrm {~cm}


A) x=9 cm;y=92 cmx = 9 \mathrm {~cm} ; y = \frac { 9 } { 2 } \mathrm {~cm}
B) x=10 cm;y=72 cmx = 10 \mathrm {~cm} ; y = \frac { 7 } { 2 } \mathrm {~cm}
C) x=8 cm;y=112 cmx = 8 \mathrm {~cm} ; y = \frac { 11 } { 2 } \mathrm {~cm}
D) x=11 cm;y=52 cmx = 11 \mathrm {~cm} ; y = \frac { 5 } { 2 } \mathrm {~cm}

E) None of the above
F) A) and B)

Correct Answer

verifed

verified

Find the function with the given derivative whose graph passes through the point P. - r(t) =sec2t4,P(0,0) \mathrm { r } ^ { \prime } ( \mathrm { t } ) = \sec ^ { 2 } \mathrm { t } - 4 , \mathrm { P } ( 0,0 )


A) r(t) = sec t tan t - 4t -1
B) r(t) = sec t - t - 6
C) r(t) = tan t - 4t
D) r(t) = sec t - 4t - 4

E) None of the above
F) B) and C)

Correct Answer

verifed

verified

Solve the problem. -Suppose the derivative of the function y=f(x) y = f ( x ) is y=(x3) 2(x+5) y ^ { \prime } = ( x - 3 ) ^ { 2 } ( x + 5 ) . At what points, if any, does the graph of ff have a local minimum or local maximum?


A) local maximum at x = -5
B) no local minimum or local maximum
C) local minimum at x = -5
D) local minimum at x = 3

E) A) and D)
F) B) and C)

Correct Answer

verifed

verified

Provide an appropriate response. -As xx moves from left to right though the point c=6\mathrm { c } = 6 , is the graph of f(x)=x+1x\mathrm { f } ( \mathrm { x } ) = \mathrm { x } + \frac { 1 } { \mathrm { x } } rising, or is it falling? Give reasons for your answer.

Correct Answer

verifed

verified

The derivative of the function...

View Answer

Use l'H^opital's rule to find the limit. - limx3x+67x2+7x7\lim _ { x \rightarrow \infty } \frac { 3 x + 6 } { 7 x ^ { 2 } + 7 x - 7 }


A) 1
B) 314\frac { 3 } { 14 }
C) 0
D) 37\frac { 3 } { 7 }

E) B) and D)
F) C) and D)

Correct Answer

verifed

verified

Solve the problem. -Find the approximate values of r1r _ { 1 } through r4r _ { 4 } in the factorization 6x412x37x2+13x1=6(xr1)(xr2)(xr3)(xr4)6 x ^ { 4 } - 12 x ^ { 3 } - 7 x ^ { 2 } + 13 x - 1 = 6 \left( x - r _ { 1 } \right) \left( x - r _ { 2 } \right) \left( x - r _ { 3 } \right) \left( x - r _ { 4 } \right)

Correct Answer

verifed

verified

\[\begin{aligned}
\mathrm { r ...

View Answer

Find the largest open interval where the function is changing as requested. -Increasing f(x) =14x212xf ( x ) = \frac { 1 } { 4 } x ^ { 2 } - \frac { 1 } { 2 } x


A) (,) ( - \infty , \infty )
B) (1,) ( 1 , \infty )
C) (1,1) ( - 1,1 )
D) (,1) ( - \infty , - 1 )

E) All of the above
F) C) and D)

Correct Answer

verifed

verified

Showing 81 - 100 of 412

Related Exams

Show Answer